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Distribution functions in virial and hypervirial theory 

C M FARMER 
Mathematics Department, Royal Holloway College, University of London, Englefield 
Green, Surrey, UK 

MS received 15 November 1971, in revised form 5 May 1972 

Abstract. The forms of the virial and hypervirial theorems are derived when a distribution 
function, that is, the Laplace transform of a distribution, is taken to define a quantum- 
mechanical system. The validity of the resulting equations imposes necessary (and sufficient) 
conditions on the distribution and hence the distribution function. Distribution theory is 
used to establish the existence of an exponential function satisfying the virial theorem for 
the Yukawa potential for a restricted range of the defining parameters. For hypervirial 
relations, the method would seem of little practical importance. 

1. Introduction 

The idea of considering the wavefunction as the image, under the Laplace transform, 
of some ‘weighting function’ has been utilized by Somorjai (1968, 1969), Shillady (1969) 
and Empedocles (1970). In a computational treatment the parameters used to define the 
weighting function are optimized variationally, using the minimum of the mean value 
of the energy as the criterion for the acceptability of an approximate wavefunction. 
The numerical accuracy achieved by this approach has prompted parallel treatments 
based on different transform kernels (Billingsley and Shillady 1970, Bishop and Somorjai 
1970, Somorjai and Bishop 1970, Yue and Somorjai 1970). 

A previous paper (Farmer 1969) argued the case for considering the ‘weighting 
function’ as a distribution, in the sense of Schwartz (1966). A treatment, based on the 
variational principle, was developed and the techniques illustrated by a discussion of the 
hydrogen-like atom. Whilst other models are amenable to this treatment, impasse is 
reached if either the helium-like atom or Yukawa potential is considered. 

The failure of the theory to provide an analytic solution in these cases motivated the 
consideration of other criteria which any reasonable variation function should satisfy. 
In this context Lowdin (1959) has shown that the virial theorem defines a necessary 
condition on a given system. The virial theorem may be derived as a special case of 
hypervirial theory and Coulson (1965) has shown that diagonal and off-diagonal 
hypervirial relations provide necessary and sufficient conditions for the solution of the 
Schrodinger equation. 

The present paper takes the wavefunction defining a quantum-mechanical system, 
either the exact function or an approximation, as a distribution function, that is, the 
Laplace transform of some distribution. The forms of the virial and hypervirial theorems 
appropriate to this definition are derived. The equations from the hypervirial relations, 
necessary and sufficient conditions for the solution of the Schrodinger equation, will 
yield exact solutions. In contrast, the virial theory equation, providing only a necessary 
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condition on the distribution generating the wavefunction, may be used as a criterion 
to be satisfied in any approximation to an exact specification of the quantum-mechanical 
system. The analysis of the equations to determine the appropriate distribution, and 
hence either an exact or approximate wavefunction for the system, is illustrated. 

2. Elements of the distribution function approach 

For a one-particle system and a spherically symmetric potential, the use of spherical 
polar coordinates to define configuration space allows the decomposition of the wave- 
function Y into a radial term R and an angular one @ given by 

Y(v) = R(r)@(O; 4). (1) 

In extending the analysis to many-particle systems, such a decomposition of the wave- 
function to radial and angular dependence of the form (1) requires that these terms are 
subject to appropriate symmetry constraints. A first approximation to the wavefunction 
may be inherent in the assumption of this decomposition. 

Another paper (Farmer 1972) shows that, for a radial function R subject to no 
constraints, the following definition is well made: 

R(r)  = rfplRp(r) = T!, exp( - x . r ) )  = ( T ! ,  fp(x)) = 

where [ p ]  is some multi-index, p is Lebesgue measure on R", the Cartesian product of n 
copies of the real line R, and f ,  is the function 

f ,  : x -, r [ p 1  exp( - x . r )  X E  R" r E (R+)" 

where R +  is the positive real line; T P  is a tempered distribution having bounded support 
on the left and the product x . r is defined as 

x . r  = xiri, 
i =  1 

Under this construction, the symmetry conditions on R will be inherited by the defining 
distribution TP. Implicit in the remaining theory is that for a many-particle system the 
distribution TP, associated with the radial part of the wavefunction, carries the appropri- 
ate symmetry constraints. In the examples, illustrating the method, only one-particle 
systems are considered, avoiding any symmetry complications. 

The boundary condition that the wavefunction'€' defines a bound state requires that 
Y be square integrable with respect to the volume element on R". Taking the restriction 
to the radial part R of the wavefunction, the bound state condition requires that 

R E L2((R+)n, v) 

where the measure v on (R')" is defined by 
n 

v(dr) = n r: dr,. 
i =  1 

A three-dimensional euclidean universe has been assumed. This is sufficient to guarantee 
that the trial wavefunctions used satisfy the hypotheses of the following lemmas, where 
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S p  and T P  will be tempered distributions having bounded support on the left, unless 
otherwise stated. Extensions of the proofs given in Farmer (1969) may be used to 
establish the results : 

Lemma I : Given radial wavefunctions hi, h, such that 

( h i ( r ) l h k ( r ) >  < 
then 

( h i ( r ) l h k ( r ) >  = (sl, ( T ; ,  Sy)) E (sf: 8 T; ,  S?) 

where 

hi(r) (sl  > fp(x)> hk(r )  = (Tc,fp(y)) 
and 

Sy = ( fp (41fp (Y)> .  
Let XI denote the Hamiltonian when Schrodinger's time-independent equation is 

reduced to radial dependence by a separation of variables technique, that is 

x ' R k ( r )  = A k p R k ( r )  

in which the associated eigenvalue )bkp may depend on a parameter [/I, [PI 
arising from the separation process. Then : 

domain of the operator 2' 

[P( l ) ]  

Lemma 11: Using the above notation, but with h k  E D,! c L2((Rt)n, v), D,] the 

< h i ( r ) I x ' I h k ( r I >  = (Sl, ( T ; ,  Hy)) 

provided that T P  is a distribution having compact support and [PI 3 0 

h k ( r )  = ( T c , f p ( Y ) >  

and 

HS' = (fp(x)l~'lfp(Y)>. 
The generalization, when the Hamiltonian A? for the system does not yield a radial 

Hamiltonian X', uses a derived Hamiltonian %der, obtained by integrating out the 
angular dependence in the expression 

( y i ( r ) l X l y k ( r ) )  = (hi(r)lA?derlhk(r)>* 

Modifying the definition of H, to 

Hf' = (fp(x)lA?derlfp(Y)> 

lemma I1 is valid under the more restrictive hypothesis that 

(h i ( r ) l  #der I h k ( r ) )  

is finite. 
Both lemma I1 and its extension assume that the term arising from the potential 

energy operator does not imply the differentiation of negative powers of the radial co- 
ordinates. 
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3. Virial theory 
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The virial theorem for a particle, subject to a central attractive force or", is 

( T )  = + ( n + l ) ( V )  

where ( T )  and ( V )  are the expectation values of the potential and kinetic energy 
operators respectively ; for a hydrogen-like system, this reduces to 

( V ) + 2 ( T )  = 0. 

The form of the virial theorem may be modified to allow linear combinations of such 
central forces but, in other cases, the definition of the virial of the force may be used. 

The Hamiltonian operator of a system having a classical analogue is the sum of the 
potential and kinetic energy operators. For such a system, a theory that allows for 
manipulation with the Hamiltonian will be sufficient for one dealing with the component 
operators. Then the pertinent building blocks are lemmas I and 11. Otherwise, lemma 
I1 is sufficient to handle the kinetic energy term whilst the virial of the force may be 
handled directly in a given application. 

Using the assumed decomposition of the wavefunction Y, the expectation value of the 
kinetic energy operator, -*Vz, that is 

( T )  (Yl -)VZlY) 

(R(r)l -+v:lR(r)) 

becomes 

to within a multiplicative constant, where V: defines the radial dependence of the kinetic 
energy operator, [I] the parameter arising from the elimination of the angular dependence, 
[PI = [P(N 

The radial function R may be expressed in the form 

Hence, under the conditions of lemma I1 

provided that T P  is a distribution having compact support and [PI is a positive parameter. 
Within this structure, the expectation value of the potential energy operator 

( V >  = (w9l~IV4) 

( W l  W ) I R W .  

becomes 

This assumes that any angular dependence may be eliminated by integration and r: 
denotes the derived radial dependence of the potential energy operator. Applying the 
definition (2) of R gives 

(V = (C 0 T;, (fp(x)lr::(r)lfp(Y)>>. 

(TmT;, (fp(x)lV:+(n+ l)w91fpCv)>> = 0 

Combining these results, the virial theorem reads 
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in the case of a central attractive force ay” ; for a hydrogen-like atom the form simplifies 
to 

(T”,T$ (f,(x)lVf - V(r ) l fp (Y )>> = 0. 

3.1. The hydrogen-like atom 

Using the model of the three-dimensional hydrogen-like atom, the kinetic energy operator 
gives rise to the term 

whilst 

Z 
V ( v )  V ( r )  = --. 

I’ 

An alternative procedure may be adopted by interpreting the radial equation 

as the one-dimensional motion of a particle in an effective potential energy L( given by 

z 1(1+ 1) 
r 2r’ 

V ( r )  = --+- 

with 

R,, is the radial function associated with the eigenfunction Y ,  defining the ( n -  1)th 
excited state, using a separation of variables. In the latter case, the generalized form of the 
virial theorem for central attractive forces urn is applicable. 

In either treatment, the virial theorem for the hydrogen-like atom assumes the 
form 

/ \ 

A solution is given by choasing the arbitrary parameter s such that 

s(s+1)-1(1+1) = 0 

that is, s = 1 or - ( l +  1). The restriction that s must take a positive value forces the 
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choice s = 1. I fs  is allowed to stand as a parameter, terms quadratic in (x + y) are intro- 
duced. If the solution of the resulting equation is to satisfy Schrodinger's time-inde- 
pendent equation, s is forced to take the value substituted here. Hence 

( C'O T;', [: l y 2 r 2 ' + 2 + { Z - 2 y ( l + l ) } r 2 f + ' ] e x p {  - ( x + y ) r }  dr 

It has been shown (Farmer 1969) to be sufficient to treat the distribution 
, which defines the lowest state for a given value 1 of the orbital quantum 

number, as a measure on some neighbourhood U,, of the compact support of T"'. 
Then 

T'f 1,f = T'+ 1 - 

{Z(x+y)-2xy(l+ 1))) = 0. 
(21 + l)! ( '!x+ IOT:' '3 (x + y ) 2 f +  3 

Appealing to the bound-state boundary condition, (x + y)-("+ 3, is a positive inte- 
grable function on U,, . Elimination of the trivial solution leaves the condition 

{ Z ( x  + y )  - 2xy(l+ l)} 2-7 '0 T:+ 1 = 0. 

But T?' and T;  ' are identical, by construction, so that a solution is given by the 
equation 

2 x { Z - ( I +  l ) x }T f : '  = 0 

using the notation 

T p 1 @ T p 1  E T f : ' .  

Using the fundamental theorem (Schwartz 1966) that a distribution Ton R satisfies 

x T = O  

if and only if Tis proportional to the Dirac measure 6 having point support the origin 

or TI+' = C l + l ~ z , ( l + l )  TI+' 0 

for some constant C, + '. Hence, a nontrivial solution is 

and the constant CI+ may be determined from the normalization condition on the 
radial function RI + , I .  

The excited states may be analysed by a combination of the above procedures and the 
treatment used in the discussion of excited states in the variational principle approach 
(Farmer 1969). 

3.2. The Yukawa potential 

An example in which the particle is subject to a central force not of the form ar", for some 
integer n, is provided by the Yukawa potential -a exp( -2r)r -  '. Using the definition of 
the virial of the force, the theorem reads 
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where the conservative force 
function V 

F on the particle is derivable from a potential energy 

Insertion of the Yukawa potential yields 

The inherent structure of the system is retained if only the spherically symmetric states 
are considered. A further simplification is introduced when the wavefunction Y n ,  
defining the ( n  - 1)th excited state, is taken as 

yn( r )  E RAY) = < Tz 9 f ( x ) >  
where T“ is a distribution having compact support and f is the function f p ,  when p 
takes the value zero. 

With this simple model, the necessary interchanges of integration in the final term 
may be justified directly. Applying the definition of Y n ,  the theorem reads : 

) = 0  ( Tx9 Ti I ( Z j F  - ( x  + I* + y)3 
2xy a(x + 31, + y )  

which reduces to the appropriate equation for the spherically symmetric states of the 
hydrogen-like atom of nuclear charge a, in the limit i = 0. 

The standard arguments show that it is sufficient to consider the distribution T’ ,  
defining the ground state, as a measure on some neighbourhood D of the compact 
support of T’. Appealing to the boundary condition that Yn defines a bound state and 
the inequality 1 2 0, ( x + Y ) - ~ .  ( ~ + i + y ) - ~  is a positive integrable function on D. 
Elimination of the trivial solution reduces the equation to 

{2(x + i +y)3xy - a(x + y)3(x + 3A + y ) }  T i q !  = 0. 

But, by construction, T: and T i  are identical which implies that a solution is given by 
the equation 

{2x2(2x + - u ( ~ x ) ~ ( ~ x  + 3%)) T i  = 0 

that is 

2x2p(x, a ,  2)T: = 0 

where 

T j @ T i  T : .  

The cubic p(x,  a, A) has its stationary values given by the equation 

12x2 + 4x(3 i  - 2a) + 3 4 2  - 2a) = 0 

thus 

x = k(2a - 31 f ( 6 d  + 4 ~ ’ )  ‘’2), 

These stationary values are such that 

X ,  = ( 2 ~ - 3 1 . ) + ( 6 a A + 4 ~ ~ ) ” ~  3 0 as i >< 2a. 
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Hence, for A > 2 4  both stationary points occur at negative values of x. Combining this 
with the knowledge that p(  - 00, a, A) - 00 and p(0, a, A) > 0, the only zeros which occur 
take negative values and as such lead to physically unacceptable solutions. 

For the reverse inequality A < 2a, at least one stationary point occurs at a positive 
value of x. The facts that p( - 00, a, A) - CO and p(0, a, A) > 0 couple to give at least 
one zero occurring at a negative value of x. The condition for three real zeros 

P(&Xs, a, A) -= 0 

reduces to the inequality 

27A2 - 9aA - 4a2 - (2a + 3A)(4a2 + ~ u A ) ” ~  < 0 

which is satisfied if 

Pd(A) 27A2-20aA-9a2 < 0. 

Estimating the quadratic P d ,  pd(0) < 0 whilst pd(2a) > 0, that is, there exists some value 
A, E [0,2a) such that pd(Ac) = 0 and hence the inequality is satisfied for all physically 
acceptable A in the range 0 < A < A, . Solving for A,, subject to the condition A, E [0,2a) 

U A, = -( 10 +7J7). 27 

Hence, for (a/27)(10+ 7J7) < A < 2a, p(x, a, A) has only one real zero and this occurs 
at a negative value of x, yielding a physically unacceptable solution. 

For the remaining range 0 < A < A,, the cubic p has three real zeros, either all dis- 
tinct or where two may coincide ; of these one occurs at a negative value of x, the re- 
maining two (one) assuming positive values, since p(0, a, A) > 0. Hence, if this particular 
inequality is satisfied by the pair A, a, there exists either one or two points x, > 0 such 
that 

Then the equation defining the measure T1 reads 
P(X, a, 4 = (x - x,)q(x, a, 4. 

2X7X - x,)q(x, a, A)T; = 0. 

Ignoring the trivial solution and using the result quoted in the analysis of the hydrogen- 
like atom (Schwartz 1966) 

to within a multiplicative constant. Hence there exists an exponential function satisfying 
the virial theorem for the Yukawa potential when the parameters a and A obey the 
above inequality. However, that a wavefunction satisfy the virial theorem is a necessary, 
but by no means sufficient, condition that it be an eigenfunction of the Schrodinger 
equation defining the system. 

4. Hypervirial theory 

Coulson (1965) has shown that if the Hamiltonian of a one-dimensional system H is 
given by 

1 d2 
2 dx 

H = --,+V(X) 
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and IY) is a bound state eigenfunction for which 

HIY) = 1.ylY) 

a necessary and sufficient condition for another exact bound state solution 10) 

HI@.) = 1.@1@) 

is that 

(@l[H, f(x)llY> = (@IHf(x) - f ( x )H lW = ( A D  - 4 x @ l f ( x ) t W  ( 3 )  

for all suitably well behaved functions f. Parallel results are valid if the commutator 
[ H ,  f(x)] is replaced by either [ H ,  [ H ,  f(x)]] or [ H ,  f (x)  dldx]. The diagonal elements 
reduce to 

(YI[H,gl l~ ' )  = 0. (4) 

In generalizing hypervirial theory to the three-dimensional case, it is sufficient to 
work with a subspace invariant under the action of the Hamiltonian or a subspace 
containing all the bound-state eigenfunctions ; a complete set of bound-state eigenfunc- 
tions 10) will not exist always (Bradley and Hughes 1969). And Epstein and Hirschfelder 
(1961) give the theory where the functionf is replaced by a time-independent operator W. 

Since the distribution theory approach breaks down when the differentiation of 
negative powers of a coordinate is involved, only certain operators Ware allowed but 
any analytic function is acceptable. Trouble will arise also when the double commutator 
[ H ,  [H, W ] ]  is introduced. In some cases, this can be overcome by restricting attention 
to the spherically symmetric states (obviating the term i l ( l +  l)r- '  occurring in the 
Legendrian) and expressing the kinetic energy operator in the form 

-1 d2  

This form follows naturally when the hermitian radial momentum operator propor- 
tional to 

1 2  
- - r  
r 8r 

is used in preference to the nonhermitian operator 2/8r. 
The first assumption is that any angular dependence in the expression 

(@(r)l[H, Wll'y(f9) 

may be integrated out ; [ H ,  Wider is the radial operator derived from the commutator 
[ H ,  W] in the process. 

Combining this with the modification necessary if the double commutator is used, 
lemmas I and 11, previously established, are sufficient to justify the necessary inter- 
changes of integration. The radial function R,, is associated with the eigenfunction Y,, 
defining the (n - 1)th excited state, in the separation of variables decomposition. Using 
the theory 

KP(d = ( CP, fp(x)> 

with TnP a distribution having compact support and [p] 2 0. Then the diagonal hyper- 
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virial relation, derived from (4) when g is replaced by the operator W, yields the distribu- 
tional hypervirial equation 

<Tlp@Ty, <f~(~)l[~, Wlder l fp (Y)>>  = O. 

Generalizing to the off-diagonal case 

(Tip@ T y P ,  ( f p ( x ) l [ H ,  Wlderlfp(y)>> = Cmn(Anp-Amp)< Tlp@T;P,  <fp(x)l %erlfp(y)>> 

to within a multiplicative constant Cmn; W,,, is the operator derived from W by the 
elimination of the angular dependence in the expression 

< 'yn(r) I W I 'ym(v)> 

as above. 

4.1. The hydrogen-like atom 

The appropriate form of the hypervirial theory is the three-dimensional generalization 
where the angular dependence is eliminated, using the decomposition 

R3 2 R+@SZ 

yn(r)  = Rns(r)YY(d, 4)  
for Sz the spherical shell parametrized by the pair (e,$). Then 

s = s(l)  

is the decomposition for the wavefunction YE,  defining the (n - 1)th excited state, where 
YY(0, $) denotes the spherical harmonic which is well defined for all values of the polar 
angle 8. 

The derived Hamiltonian Xi is given by 

< ~ n ( ~ ) I W ' y n ( J . ) >  = c s < ~ n s ( r ) l ~ i l R n s ( r ) >  
for some constant C , .  

The kinetic energy operator derived from Xi will be denoted by -9V: ; any terms 
expressible as a function of r will be considered as contributing to the effective potential 
energy so that V: is simply the differential operator 

Using Taylor's theorem in a neighbourhood of the origin for an analytic function f 
compatible with the hypervirial relations ( 3 )  and ( 4 ) , f ( r )  = r"', without loss of generality. 
Then the Hamiltonian Xi is such that 

holds for the radial function, Tns a distribution with compact support and s a positive 
parameter. Then 
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where 

T(z) = e-ttZ-l dt Rez > 0 som 
and 

r ( z +  1 )  = qZ). ( 5 )  

( ~ ( r ) l [ x , f l l w 9 )  = 0 

But, by construction, T:" and TY are identical so that the diagonal hypervirial relation 

is trivially satisfied for f ( r )  of the form rm. 
That either of the other two diagonal hypervirial relations quoted is valid for an 

infinity of functions f is a sufficient condition for the wavefunction Y to be an exact 
solution of the Schrodinger equation. Attention will be restricted to the one involving 
the double commutator. This necessitates the restriction to spherically symmetric 
states and the modified form of the kinetic energy operator. The hydrogen-like atom in 
three dimensions will be used to demonstrate the validity of the method whilst showing 
its impractibility as a means of solving the Schrodinger equation. 

Without loss of generality, the function f will be defined as 

f ( r )  = rm 

for some integer m. The assumption of spherical symmetry requires that 

Y f l ( r )  = R,(r) = (T: ,  exp( - x r ) )  

where T" is a distribution having compact support. Then 

( YU,(r)l [X [Z f ( r ) l l l ~ " ( r ) )  

= o  
since, for a diagonal hypervirial relation, the left hand side is zero. 

It has been shown (Farmer 1969) to be sufficient to consider the distribution 
T" ',defining the lowest state for agiven value 1 of the orbital quantum number, T"1.I = 

as a measure on an arbitrary neighbourhood of the compact support of T" '. Taking 
the special case of spherical symmetry I = 0, the distribution T' defining the ground 
state may be considered as a measure on an arbitrary neighbourhood of the compact 
support of T ' .  

Appealing to the boundary condition that a bound state is defined by an L2 eigen- 
function, with respect to the measure v(dr) = r2 on R+, establishes ( x + y ) - ( " + ' )  as a 
positive integrable function on some neighbourhood Do of the compact support of T ' .  
Elimination of the trivial solutions leaves the condition 

- 

{ ( m  + l ) ( m  - 2 ) ( x  +y)' + 4 Z ( x  + y )  -4xym(m-  1))T:O T:  = 0 

for measure T ' .  But, by construction, the measures T j  and T: are identical so that, 
where T i  denotes the diagonal tensor product T i @  T: 

x ( z - x ) T :  = 0. 
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Using the result from distribution theory quoted above 

T i  = C1dz 

to within an arbitrary constant C,, for nontrivial solution. Hence, the associated radial 
function is 

R,(r) = C, exp(-Zr) 

where a normalization condition on R , defines C, explicitly. 
The excited states may be calculated by using (i) the orthogonality condition and the 

requirement that only pure states are considered to determine the form of the distribution 
and conditions on the support of any associated measure, and (ii) the hypervirial rela- 
tion and symmetry arguments to determine the specific measure ; but only the spherically 
symmetric terms are amenable to this procedure. 

But the off-diagonal hypervirial relations also provide sufficient conditions for the 
solution of the Schrodinger equation. The simplest form of function f ,  compatible with 
the theory, will be assumed, that is 

f ( r )  = rm 

without loss of generality. States having distinct values of the orbital quantum number 
1, and hence s 3 s(I), will lead to trivial relations, from the orthogonality of the functions 
defining the angular dependence. Hence, using the functional equation (9, one derives 
the hypervirial relation 

from the form 

('yn(r)l[x? rmllyk(r)> = (An -~k)(yn(r)lrmlyk(~)). 

The off-diagonal hypervirial method assumes a knowledge of the lowest state, for 
fixed 1, that is 

dZ,(f + 1 )  

2 4 +  , , I  = -Z2(1+ 1 ) - 2 .  

TI+ 1 , f  = 

to within a multiplicative constant, with 

As for the variational principle, the orthogonality condition establishes that 
TI + 2.1 = - TI+' is a distribution of the first order. The requirement that only pure states 
are considered combines to give the decomposition of T f f 2  on a neighbourhood of the 
compact support of T ' + ~  as 

T"' = (l-A'D)p\ 

for some constant A' and measure p i .  Working on some neighbourhood W for which 
this decomposition of TIf2 is valid, the off-diagonal relation, associating the two lowest 
states for a given I, is 

for some function r ,  where p = m + 2s + 4. 
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But the orthogonality condition gives pi  as the Dirac measure 6 ,  on some FV, 
where 

z 
1+1 

w + - - ( 2 ~ + 3 ) A ' =  0. 

The equation then reduces to 

This holds for all m, and hence for an infinity of functions f ,  if 

(i) w2 + 2 i f +  2 , 1  = 0 

and 

Eliminating 2 4  + 2 , f  between these equations gives 

The second choice is incompatible with the condition that the support of the measure 
p i ,  that is, supp p i ,  is such that 

supp pi  E R'. 

The value of the constant A' may be calculated from the orthogonality conditions, thus 

Z A' = 
( I +  l)(s+2)' 

In previous estimates of the excited states, the choice 

s = l  

has already been forced at this stage. In this treatment, substitution in the Schrodinger 
equation forces the same choice to eliminate the term arising from the angular de- 
pendence. Then w and A' may be computed and condition (6)  gives the energy eigenvalue 
4+*J as 

2A'.*,[ = -z2(1+2)-2. 

With the knowledge of A', w and p i  already acquired, T'+ is then determined explicitly, 
together with the value of the energy eigenvalue. 

But reference has been made to the Schrodinger equation to define a suitable choice 
for the arbitrary parameter s. This difficulty would have been obscured had the de- 
composition 

Y"(4 = &'(d m e ,  4)  
been assumed initially. Proceeding similarly, higher excited states may be evaluated 
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5. Conclusions 

Whereas the distribution function approach has shown the existence of an exponential 
function satisfying the virial theorem for the Yukawa potential for a restricted range of the 
defining parameters, the heavy equations involved in any treatment of the hypervirial 
relations would make the method seem to be of theoretical, rather than practical, 
relevance there. 
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